Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.948
Filter
1.
Environ Microbiol ; 26(4): e16618, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561820

ABSTRACT

Microplastics (MPs) have the potential to modify aquatic microbial communities and distribute microorganisms, including pathogens. This poses a potential risk to aquatic life and human health. Despite this, the fate of 'hitchhiking' microbes on MPs that traverse different aquatic habitats remains largely unknown. To address this, we conducted a 50-day microcosm experiment, manipulating estuarine conditions to study the exchange of bacteria and microeukaryotes between river, sea and plastisphere using a long-read metabarcoding approach. Our findings revealed a significant increase in bacteria on the plastisphere, including Pseudomonas, Sphingomonas, Hyphomonas, Brevundimonas, Aquabacterium and Thalassolituus, all of which are known for their pollutant degradation capabilities, specifically polycyclic aromatic hydrocarbons. We also observed a strong association of plastic-degrading fungi (i.e., Cladosporium and Plectosphaerella) and early-diverging fungi (Cryptomycota, also known as Rozellomycota) with the plastisphere. Sea MPs were primarily colonised by fungi (70%), with a small proportion of river-transported microbes (1%-4%). The mere presence of MPs in seawater increased the relative abundance of planktonic fungi from 2% to 25%, suggesting significant exchanges between planktonic and plastisphere communities. Using microbial source tracking, we discovered that MPs only dispersed 3.5% and 5.5% of river bacterial and microeukaryotic communities into the sea, respectively. Hence, although MPs select and facilitate the dispersal of ecologically significant microorganisms, drastic compositional changes across distinct aquatic habitats are unlikely.


Subject(s)
Alphaproteobacteria , Burkholderiales , Humans , Microplastics , Plastics , Biological Transport
2.
Environ Monit Assess ; 196(5): 409, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564102

ABSTRACT

The amount of information available on the microplastic (MP) contamination in Goa's riverine water systems is currently limited. The abundance, size, colour, and polymer composition of microplastics in Chapora River surface water were investigated in this study. MPs in Chapora River surface water ranged from 0.1 particles/L (station 13) to 0.47 particles/L (station 5). The mean (± standard deviation) MP concentration was 0.25 (± 0.13) particles/L. Fibre was the dominant shape (77.15%), followed by fragments (12.36%), films (9.36%), and foam (1.12%). Most MPs were found in the 0.1-0.3 mm size range, then in the 0.3-1 mm and 1-5 mm. The dominant type of polymer studied was polyethylene terephthalate (PET; 46%), followed by high-density polyethylene (HDPE; 14%), polypropylene (PP; 5%), and polystyrene (PS; 1%). The risk assessment study indicated high risk with respect to PHI, while PLI shows low risk in the area. The source of MPs was mostly anthropogenic in nature in the region. When compared with other tropical rivers, MP pollution was relatively lower in the Chapora River. Nevertheless, the baseline data will help the local administration take mitigation measures to reduce the impact of MP pollution in the region.


Subject(s)
Microplastics , Rivers , Plastics , Environmental Monitoring , Risk Assessment , India , Polyethylene , Polymers , Water
3.
Environ Geochem Health ; 46(5): 166, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592562

ABSTRACT

Cadmium (Cd) pollution ranks first in soils (7.0%) and microplastics usually have a significant adsorption capacity for it, which could pose potential threats to agricultural production and human health. However, the joint toxicity of Cd and microplastics on crop growth remains largely unknown. In this study, the toxic effects of Cd2+ and two kinds of microplastic leachates, polyvinyl chloride (PVC) and low-density polyethylene (LDPE), on wheat seed germination and seedlings' growth were explored under single and combined conditions. The results showed that Cd2+ solution and two kinds of microplastic leachates stimulated the wheat seed germination process but inhibited the germination rate by 0-8.6%. The combined treatments promoted wheat seed germination but inhibited the seedlings' growth to different degrees. Specifically, the combination of 2.0 mg L-1 Cd2+ and 1.0 mgC L-1 PVC promoted both seed germination and seedlings' growth, but they synergistically increased the antioxidant enzyme activity of seedlings. The toxicity of the PVC leachate to wheat seedlings was stronger than LDPE leachate. The addition of Cd2+ could alleviate the toxicity of PVC leachate on seedlings, and reduce the toxicity of LDPE leachate on seedlings under the same concentration class combinations but aggravated stress under different concentration classes, consistent with the effect on seedlings' growth. Overall, Cd2+, PVC, and LDPE leachates have toxic effects on wheat growth, whether treated under single or combined treatments. This study has important implications for the joint toxicity of Cd2+ solution and microplastic leachates in agriculture.


Subject(s)
Seedlings , Triticum , Humans , Germination , Cadmium/toxicity , Microplastics , Plastics , Polyethylene , Seeds , Antioxidants
4.
Curr Protoc ; 4(4): e1027, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588063

ABSTRACT

The development of patient-derived intestinal organoids represents an invaluable model for simulating the native human intestinal epithelium. These stem cell-rich cultures outperform commonly used cell lines like Caco-2 and HT29-MTX in reflecting the cellular diversity of the native intestinal epithelium after differentiation. In our recent study examining the effects of polystyrene (PS), microplastics (MPs), and nanoplastics (NPs), widespread pollutants in our environment and food chain, on the human intestinal epithelium, these organoids have been instrumental in elucidating the absorption mechanisms and potential biological impacts of plastic particles. Building on previously established protocols in human intestinal organoid culture, we herein detail a streamlined protocol for the cultivation, differentiation, and generation of organoid-derived monolayers. This protocol is tailored to generate monolayers incorporating microfold cells (M cells), key for intestinal particle uptake but often absent in current in vitro models. We provide validated protocols for the characterization of MPs/NPs via scanning electron microscopy (SEM) for detailed imaging and their introduction to intestinal epithelial monolayer cells via confocal immunostaining. Additionally, protocols to test the impacts of MP/NP exposure on the functions of the intestinal barrier using transendothelial electrical resistance (TEER) measurements and assessing inflammatory responses using cytokine profiling are detailed. Overall, our protocols enable the generation of human intestinal organoid monolayers, complete with the option of including or excluding M cells, offering crucial techniques for observing particle uptake and identifying inflammatory responses in intestinal epithelial cells to advance our knowledge of the potential effects of plastic pollution on human gut health. These approaches are also amendable to the study of other gut-related chemical and biological exposures and physiological responses due to the robust nature of the systems. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Human intestinal organoid culture and generation of monolayers with and without M cells Support Protocol 1: Culture of L-WRN and production of WRN-conditioned medium Support Protocol 2: Neuronal cell culture and integration into intestinal epithelium Support Protocol 3: Immune cell culture and integration into intestinal epithelium Basic Protocol 2: Scanning electron microscopy: sample preparation and imaging Basic Protocol 3: Immunostaining and confocal imaging of MP/NP uptake in organoid-derived monolayers Basic Protocol 4: Assessment of intestinal barrier function via TEER measurements Basic Protocol 5: Cytokine profiling using ELISA post-MP/NP exposure.


Subject(s)
Microplastics , Plastics , Humans , Microplastics/metabolism , Caco-2 Cells , Plastics/metabolism , Intestinal Mucosa/metabolism , Organoids , Epithelium , Cytokines/metabolism
5.
Arch Microbiol ; 206(4): 198, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558101

ABSTRACT

Micro- plastics (MPs) pose significant global threats, requiring an environment-friendly mode of decomposition. Microbial-mediated biodegradation and biodeterioration of micro-plastics (MPs) have been widely known for their cost-effectiveness, and environment-friendly techniques for removing MPs. MPs resistance to various biocidal microbes has also been reported by various studies. The biocidal resistance degree of biodegradability and/or microbiological susceptibility of MPs can be determined by defacement, structural deformation, erosion, degree of plasticizer degradation, metabolization, and/or solubilization of MPs. The degradation of microplastics involves microbial organisms like bacteria, mold, yeast, algae, and associated enzymes. Analytical and microbiological techniques monitor microplastic biodegradation, but no microbial organism can eliminate microplastics. MPs can pose environmental risks to aquatic and human life. Micro-plastic biodegradation involves fragmentation, assimilation, and mineralization, influenced by abiotic and biotic factors. Environmental factors and pre-treatment agents can naturally degrade large polymers or induce bio-fragmentation, which may impact their efficiency. A clear understanding of MPs pollution and the microbial degradation process is crucial for mitigating its effects. The study aimed to identify deteriogenic microorganism species that contribute to the biodegradation of micro-plastics (MPs). This knowledge is crucial for designing novel biodeterioration and biodegradation formulations, both lab-scale and industrial, that exhibit MPs-cidal actions, potentially predicting MPs-free aquatic and atmospheric environments. The study emphasizes the urgent need for global cooperation, research advancements, and public involvement to reduce micro-plastic contamination through policy proposals and improved waste management practices.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics , Biodegradation, Environmental , Industry , Microbiological Techniques
6.
Aquat Toxicol ; 270: 106905, 2024 May.
Article in English | MEDLINE | ID: mdl-38569307

ABSTRACT

The enhanced adsorption of pollutants on biofilm-developed microplastics has been proved in many studies, but the ecotoxicological effects of biofilm-developed microplastics on organisms are still unclear. In this study, adult zebrafish were exposed to original microplastics, biofilm-developed microplastics, original microplastics absorbed with oxytetracycline (OTC), and biofilm-developed microplastics absorbed with OTC for 30 days. The intestinal histological damage, intestinal biomarker response, gut microbiome and antibiotic resistance genes (ARGs) profile of zebrafish were measured to explore the roles of biofilm in the effects of microplastics. The results showed that biofilm-developed microplastics significantly increased the number of goblet cells in intestinal epithelium compared with the control group. The biofilm-developed microplastics also induced the oxidative response in the zebrafish intestines, and biofilm changed the response mode in the combined treatment with OTC. Additionally, the biofilm-developed microplastics caused intestinal microbiome dysbiosis, and induced the abundance of some pathogenic genera increasing by several times compared with the control group and the original microplastics treatments, regardless of OTC adsorption. Furthermore, the abundance of ARGs in biofilm-developed microplastics increased significantly compared with the control and the original microplastic treatments. This study emphasized the significant influence and unique role of biofilm in microplastic studies.


Subject(s)
Oxytetracycline , Water Pollutants, Chemical , Animals , Oxytetracycline/toxicity , Microplastics/toxicity , Plastics , Zebrafish , Water Pollutants, Chemical/toxicity , Anti-Bacterial Agents/toxicity , Intestines
7.
Environ Sci Technol ; 58(15): 6647-6658, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38563431

ABSTRACT

The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.


Subject(s)
Microbiota , Tenebrio , Animals , Tenebrio/metabolism , Tenebrio/microbiology , Plastics , Polypropylenes/metabolism , Microplastics , Molecular Weight , Polystyrenes , Larva/metabolism , Bacteria/metabolism , Biodegradation, Environmental
8.
Sci Total Environ ; 926: 172125, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38565353

ABSTRACT

Despite both microplastics (MPs) and harmful algae blooms (HABs) may pose a severe threat to the immunity of marine bivalves, the toxification mechanism underlying is far from being fully understood. In addition, owing to the prevalence and sudden occurrence characteristics of MPs and HABs, respectively, bivalves with MP-exposure experience may face acute challenge of harmful algae under realistic scenarios. However, little is known about the impacts and underlying mechanisms of MP-exposure experience on the susceptibility of immunity to HABs in bivalve mollusks. Taking polystyrene MPs and diarrhetic shellfish toxin-producing Prorocentrum lima as representatives, the impacts of MP-exposure on immunity vulnerability to HABs were investigated in the thick-shell mussel, Mytilus coruscus. Our results revealed evident immunotoxicity of MPs and P. lima to the mussel, as evidenced by significantly impaired total count, phagocytic activity, and cell viability of haemocytes, which may result from the induction of oxidative stress, aggravation of haemocyte apoptosis, and shortage in cellular energy supply. Moreover, marked disruptions of immunity, antioxidant system, apoptosis regulation, and metabolism upon MPs and P. lima exposure were illustrated by gene expression and comparative metabolomic analyses. Furthermore, the mussels that experienced MP-exposure were shown to be more vulnerable to P. lima, indicated by greater degree of deleterious effects on abovementioned parameters detected. In general, our findings emphasize the threat of MPs and HABs to bivalve species, which deserves close attention and more investigation.


Subject(s)
Marine Toxins , Mytilus , Animals , Marine Toxins/toxicity , Microplastics/metabolism , Plastics/metabolism , Mytilus/metabolism , Shellfish
9.
Water Sci Technol ; 89(7): 1771-1786, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619902

ABSTRACT

The effluent of WWTPs is an important source of microplastics (MP) for the aquatic environment. In this review study, MPs in wastewater treatment plants (WWTP) in Türkiye and their removal from WWTPs are reviewed for the first time. First, MP characteristics in the influent and effluent of WWTPs in Türkiye are discussed. In the next section, the abundance of MPs in the influent and effluent of WWTPs in Türkiye and the MP removal efficiency of WWTPs in Türkiye are evaluated. Then, the results of studies on MP abundance and characteristics in Türkiye's aquatic environments are presented and suggestions are made to reduce MPs released from WWTPs into the receiving environments. Strategies for reducing MPs released to the receiving environment from WWTPs of Türkiye are summarized. In the last section, research gaps regarding MPs in WWTPs in Türkiye are identified and suggestions are made for future studies. This review paper provides a comprehensive assessment of the abundance, dominant characteristics, and removal of MPs in WWTPs in Türkiye, as well as the current status and deficiencies in Türkiye. Therefore, this review can serve as a scientific guide to improve the MP removal efficiency of WWTPs in Türkiye.


Subject(s)
Water Pollutants, Chemical , Water Purification , Microplastics , Plastics , Wastewater , Waste Disposal, Fluid , Turkey , Water Pollutants, Chemical/analysis , Environmental Monitoring
10.
Environ Pollut ; 348: 123906, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38561036

ABSTRACT

Recently, there has been an increasing emphasis on examining the ecotoxicological effects of anthropogenic microparticles (MPs), especially microplastic particles, and related issues. Nevertheless, a notable deficiency exists in our understanding of the consequences on marine organisms, specifically in relation to microfibers and the combined influence of MPs and temperature. In this investigation, mysid shrimp (Americamysis bahia), an important species and prey item in estuarine and marine food webs, were subjected to four separate experimental trials involving fibers (cotton, nylon, polyester, hemp; 3 particles/ml; approximately 200 µm in length) or fragments (low-density Polyethylene: LDPE, polylactic acid: PLA, and their leachates; 5, 50, 200, 500 particles/ml; 1-20 µm). To consider the effects in the context of climate change, three different temperatures (22, 25, and 28 °C) were examined. Organismal growth and swimming behavior were measured following exposure to fragments and microfibers, and reactive oxygen species and particle uptake were investigated after microfiber exposure. To simulate the physical characteristics of MP exposure, such as microfibers obstructing the gills, we also assessed the post-fiber-exposure swimming behavior in an oxygen-depleted environment. Data revealed negligible fragment, but fiber exposure effects on growth. PLA leachate triggered higher activity at 25 °C and 28 °C; LDPE exposures led to decreased activity at 28 °C. Cotton exposures led to fewer behavioral differences compared to controls than other fiber types. The exposure to hemp fibers resulted in significant ROS increases at 28 °C. Microfibers were predominantly located within the gastric and upper gastrointestinal tract, suggesting extended periods of residence and the potential for obstructive phenomena over the longer term. The combination of increasing water temperatures, microplastic influx, and oxidative stress has the potential to pose risks to all components of marine and aquatic food webs.


Subject(s)
Plastics , Water Pollutants, Chemical , Animals , Microplastics , Temperature , Water , Polyethylene , Brazil , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Crustacea , Polyesters
11.
Mar Environ Res ; 197: 106487, 2024 May.
Article in English | MEDLINE | ID: mdl-38583358

ABSTRACT

Seagrass beds can trap large amounts of marine debris leading to areas of accumulation, known as 'sinks', of anthropogenic particles. While the presence of vegetation can enhance accumulation, less is known about how the trapping effect changes from vegetated to less vegetated patches. To test this, vegetation and sediment were sampled along a vegetation percent cover gradient from the centre of seagrass beds to nearby less vegetated patches. To determine whether trapped particles can lead to increased accumulation in associated fauna, gastropods were also collected from the transects laid across this gradient. Extracted anthropogenic particles were counted and characterised. Particles were detected in all sample types and reached quantifiable limits in at least 50% of sediment and gastropod samples. There was no significant difference in the distribution of particles found in seagrass beds compared to less vegetated patches, suggesting other factors contribute to the trapping efficiency of biogenic habitats besides simply the presence or absence of vegetation.


Subject(s)
Microplastics , Plastics , Ecosystem
12.
Part Fibre Toxicol ; 21(1): 18, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566142

ABSTRACT

Micro- and nanoplastic particles (MNP) are omnipresent as either pollution or intentionally used in consumer products, released from packaging or even food. There is an exponential increase in the production of plastics. With the realization of bioaccumulation in humans, toxicity research is quickly expanding. There is a rapid increase in the number of papers published on the potential implications of exposure to MNP which necessitates a call for quality criteria to be applied when doing the research. At present, most papers on MNP describe the effects of commercially available polymer (mostly polystyrene) beads that are typically not the MNP of greatest concern. This is not a fault of the research community, necessarily, as the MNPs to which humans are exposed are usually not available in the quantities needed for toxicological research and innovations are needed to supply environmentally-relevant MNP models. In addition, like we have learned from decades of research with particulate matter and engineered nanomaterials, sample physicochemical characteristics and preparation can have major impacts on the biological responses and interpretation of the research findings. Lastly, MNP dosimetry may pose challenges as (1) we are seeing early evidence that plastics are already in the human body at quite high levels that may be difficult to achieve in acute in vitro studies and (2) plastics are already in the diets fed to preclinical models. This commentary highlights the pitfalls and recommendations for particle and fibre toxicologists that should be considered when performing and disseminating the research.


Subject(s)
Microplastics , Nanostructures , Humans , Microplastics/toxicity , Plastics/toxicity , Polystyrenes , Particulate Matter/toxicity
13.
World J Gastroenterol ; 30(9): 1011-1017, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38577182

ABSTRACT

With continuous population and economic growth in the 21st century, plastic pollution is a major global issue. However, the health concern of microplastics/ nanoplastics (MPs/NPs) decomposed from plastic wastes has drawn public attention only in the recent decade. This article summarizes recent works dedicated to understanding the impact of MPs/NPs on the liver-the largest digestive organ, which is one of the primary routes that MPs/NPs enter human bodies. The interrelated mechanisms including oxidative stress, hepatocyte energy re-distribution, cell death and autophagy, as well as immune responses and inflammation, were also featured. In addition, the disturbance of microbiome and gut-liver axis, and the association with clinical diseases such as metabolic dysfunction-associated fatty liver disease, steatohepatitis, liver fibrosis, and cirrhosis were briefly discussed. Finally, we discussed potential directions in regard to this trending topic, highlighted current challenges in research, and proposed possible solutions.


Subject(s)
Microplastics , Non-alcoholic Fatty Liver Disease , Humans , Microplastics/adverse effects , Plastics , Liver Cirrhosis
14.
J Hazard Mater ; 470: 134272, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38613953

ABSTRACT

As a global emerging contaminant, microplastics (MPs) in water or soil can accumulate in vegetables, making them easily ingested through the diet. With excellent and tunable optical properties, carbon dots (CDs) are highly advantageous for tracing the entry process of MPs. Originally, long-wavelength CDs were synthesized from leaf-derived extracts, and fluorescent submicrometer plastics (CDs-MPs) with clean surfaces and concentrated particle sizes were obtained by soap-free microemulsion polymerization. The concentration of CDs-MPs exhibits a significant linear relationship with long-wavelength fluorescence intensity (λEx/λEm: 415/676 nm). Soybean sprouts (SBS), as an important type of food, are susceptible to contamination of MPs due to their soft epidermis and rapidly growing biomass. The results showed that CDs-MPs could be embedded into the cortex of SBS and enter the plant with cell division and elongation, leading to an increase in pore size on the cell wall surface. After entering the root system, CDs-MPs will pass through the Casparian strip and migrate in the vessels. Then, CDs-MPs enter the leaves through vascular bundles, and the distribution and size of epicuticular wax on leaves have changed. Furthermore, SBS showed resistant growth and increased levels of oxidative response when exposed to MPs/CDs-MPs. It is the first study to demonstrate the application of leaf-derived CDs in the prevention of MPs pollution by revealing the migration behavior of submicrometre plastics in SBS.


Subject(s)
Carbon , Soybeans , Plant Leaves , Quantum Dots , Plant Leaves/chemistry , Soybeans/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Microplastics/toxicity , Particle Size , Plant Roots , Plastics/chemistry , Fluorescence
15.
J Hazard Mater ; 470: 134283, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38613956

ABSTRACT

The coexistence of microplastics (MPs) and heavy metals in sediments has caused a potential threat to sediment biota. However, differences in the effects of MPs and heavy metals on microbes and plants in sediments under different sediment conditions remain unclear. Hence, we investigated the influence of polyethylene (PE) and polylactic acid (PLA) MPs on microbial community structure, Pb bioavailability, and wheatgrass traits under sequential incubation of sediments (i.e., flood, drainage, and planting stages). Results showed that the sediment enzyme activities presented a dose-dependent effect of MPs. Besides, 10 % PLA MPs significantly increased the F1 fractions in three stages by 11.13 %, 30.10 %, and 17.26 %, respectively, thus resulting in higher Pb mobility and biotoxicity. MPs altered sediment bacterial composition and structures, and bacterial community differences were evident in different incubation stages. Moreover, the co-exposure of PLA MPs and Pb significantly decreased the shoot length and total biomass of wheatgrass and correspondingly activated the antioxidant enzyme activity. Further correlation analysis demonstrated that community structure induced by MPs was mainly driven by sediment enzyme activity. This study contributes to elucidating the combined effects of MPs and heavy metals on sediment ecosystems under different sediment conditions.


Subject(s)
Geologic Sediments , Lead , Microplastics , Water Pollutants, Chemical , Geologic Sediments/microbiology , Lead/toxicity , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Microbiota/drug effects , Polyesters , Polyethylene/toxicity , Floods , Bacteria/drug effects
16.
J Hazard Mater ; 470: 134286, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615649

ABSTRACT

Microplastic hetero-aggregates are stable forms of microplastics in the aqueous environment. However, when disinfecting water containing microplastic hetero-aggregates, the response of them in water to different oxidizing agents and the effect on water quality have not been reported. Our results showed that Ca(ClO)2, K2S2O8, and sodium percarbonate (SPC) treatment could lead to the disaggregation of microplastic hetero-aggregates as well as a rise in cell membrane permeability, which caused a large amount of organic matter to be released. When the amount of oxidant dosing is insufficient, the oxidant cannot completely degrade the released organic matter, resulting in DOC, DTN, DTP and other indicators being higher than before oxidation, thus causing secondary pollution of the water body. In comparison, K2FeO4 can purify the water body stably without destroying the microplastic hetero-aggregates, but it only weakly inhibits the toxic cyanobacteria Microcystis and Pseudanabaena, which may cause cyanobacterial bloom as well as algal toxin and odorant contamination in practical application. Compared with the other oxidizers, K2S2O8 provides better inhibition of toxic cyanobacteria and has better ecological safety. Therefore, when treating microplastic-containing water bodies, we should consider both water purification and ecological safety, and select appropriate oxidant types and dosages to optimize the water treatment.


Subject(s)
Microplastics , Oxidants , Water Pollutants, Chemical , Oxidants/chemistry , Microplastics/toxicity , Microplastics/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Carbonates/chemistry , Water Purification/methods
17.
J Hazard Mater ; 470: 134219, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615647

ABSTRACT

Disposable surgical masks undeniably provide important personal protection in daily life, but the potential health risks by the release of microplastic fibres from masks should command greater attention. In this study, we conducted a microplastic fibre release simulation experiment by carrying masks in a pocket and reusing them, to reveal the number and morphological changes of microfibres released. Fourier transform infrared spectrometry, scanning electron microscopy, and optical microscopy were employed to analyse the physical and chemical characteristics of the mask fibres. The results indicated that the reuse of disposable masks led to a significant release of microplastic fibres, potentially leading to their migration into the respiratory system. Furthermore, the release of microplastic fibres increased with prolonged external friction, particularly when masks were stored in pockets. The large-scale release of microplastic fibres due to mask reuse raises concerns about potential health risks to the human respiratory system. The reuse of disposable masks should be also strictly avoided in daily life in the future. Furthermore, the current study also established a robust foundation for future research endeavours on health risks associated with microplastic fibres entering the respiratory system through improper mask usage.


Subject(s)
Masks , Microplastics , Humans , Microplastics/analysis , Microplastics/toxicity , Disposable Equipment , Equipment Reuse , Spectroscopy, Fourier Transform Infrared
18.
Environ Int ; 186: 108617, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38599027

ABSTRACT

Microplastics (MPs) and nanoplastics (NPs) pollution has emerged as a significant and widespread environmental issue. Humans are inevitably exposed to MPs and NPs via ingestion, inhalation, and dermal contacts from various sources. However, mechanistic knowledge of their distribution, interaction, and potency in the body is still lacking. To address this knowledge gap, we have undertaken the task of elucidating the toxicokinetic (TK) behaviors of MPs and NPs, aiming to provide mechanistic information for constructing a conceptual physiologically based toxicokinetic (PBTK) model to support in silico modeling approaches. Our effort involved a thorough examination of the existing literature and data collation on the presence of MPs in the human body and in vitro/ex vivo/in vivo biodistribution across various cells and tissues. By comprehending the absorption, distribution, metabolism, and excretion mechanisms of MPs and NPs in relation to their physicochemical attributes, we established a foundational understanding of the link between external exposure and internal tissue dosimetry. We observed that particle size and surface chemistry have been thoroughly explored in previous experimental studies. However, certain attributes, such as polymer type, shape, and biofilm/biocorona, warrant attention and further examination. We discussed the fundamental disparities in TK properties of MPs/NPs from those of engineered nanoparticles. We proposed a preliminary PBTK framework with several possible modeling approaches and discussed existing challenges for further investigation. Overall, this article provides a comprehensive compilation of existing TK data of MPs/NPs, a critical overview of TK processes and mechanisms, and proposes potential PBTK modeling approaches, particularly regarding their applicability to the human system, and outlines future perspectives for developing PBTK models and their integration into human health risk assessment of MPs and NPs.


Subject(s)
Microplastics , Nanoparticles , Toxicokinetics , Humans , Microplastics/toxicity , Risk Assessment , Nanoparticles/chemistry , Nanoparticles/toxicity , Environmental Exposure , Models, Biological , Tissue Distribution , Particle Size
19.
Sci Total Environ ; 927: 172308, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38599396

ABSTRACT

Despite the diverse research into the environmental impact of plastics, several stones have yet to be unraveled in terms of their ecotoxicological potential. Moreover, their detrimental impacts have become terrifying in recent years as the understanding of their tendency to associate and form cohorts with other emerging contaminants grew. Despite the hypothesis that microplastics may potentially adsorb organic pollutants, sequestering and making them not bioavailable for enhanced toxicity, evidence with pollutants such as Tetrabromobisphenol A (TBBPA) defers this assertion. TBBPA, one of the most widely used brominated flame retardants, has been enlisted as an emerging contaminant of serious environmental and human health concerns. Being also an additive to plasticware, it is not far to suspect that TBBPA could be found in association with micro/nanoplastics in our environment. Several pieces of evidence from recent studies have confirmed the micro/nanoplastics-TBBPA association and have exposed their compounded detrimental impacts on the environment and human health. This study, therefore, presents a comprehensive and up-to-date review of recent findings regarding their occurrence, factors that foster their association, including their sorption kinetics and isotherms, and their impacts on aquatic/agroecosystem and human health. The way forward and prospects for future studies were presented. This research is believed to be of significant interest to the readership due to its relevance to current environmental challenges posed by plastics and TBBPA. The study not only contributes valuable insights into the specific interaction between micro/nanoplastics and TBBPA but also suggests the way forward and prospects for future studies in this field.


Subject(s)
Ecotoxicology , Flame Retardants , Plastics , Polybrominated Biphenyls , Humans , Microplastics , Environmental Monitoring , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Environmental Pollutants
20.
Environ Int ; 186: 108633, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603814

ABSTRACT

In the severe pollution area of nanoplastics (NPs) and cadmium ions (Cd2+), the joint effects of their high environmental concentrations on primary producers may differ from those of low environmental doses. Thus, we investigated the physiological changes, cell morphology, molecular dynamic simulation, phenotypic interactions, and metabolomics responses of C. pyrenoidosa to high environmental concentrations of NPs and Cd2+ after 12-d acclimation. After 12-d cultivation, mono-NPs and mono-Cd2+ reduced cell density and triggered antioxidant enzymes, extracellular polymeric substances (EPS) production, and cell aggregation to defend their unfavorable effects. Based on the molecular dynamic simulation, the chlorine atoms of the NPs and Cd2+ had charge attraction with the nitrogen and phosphorus atoms in the choline and phosphate groups in the cell membrane, thereby NPs and Cd2+ could adsorb on the cells to destroy them. In the joint exposure, NPs dominated the variations of ultrastructure and metabolomics and alleviated the toxicity of NPs and Cd2+. Due to its high environmental concentration, more NPs could compete with the microalgae for Cd2+ and thicken cell walls, diminishing the Cd2+ content and antioxidant enzymes of microalgae. NPs addition also decreased the EPS content, while the bound EPS with -CN bond was kept to detoxicate Cd2+. Metabolomics results showed that the NPs downregulated nucleotide, arachidonic acid, and tryptophan metabolisms, while the Cd2+ showed an opposite trend. Compared with their respective exposures, metabolomics results found the changes in metabolic molecules, suggesting the NPs_Cd2+ toxicity was mitigated by balancing nucleotide, arachidonic acid, tryptophan, and arginine and proline metabolisms. Consequently, this study provided new insights that simultaneous exposure to high environmental concentrations of NPs and Cd2+ mitigated microalgae cellular toxicity, which may change their fates and biogeochemical cycles in aquatic systems.


Subject(s)
Cadmium , Metabolomics , Microalgae , Cadmium/toxicity , Microalgae/drug effects , Microalgae/metabolism , Molecular Dynamics Simulation , Water Pollutants, Chemical/toxicity , Microplastics/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...